
GENERATION OF ESTER ENOLATES BY REDUCTIVE α -DEACETOXYLATION

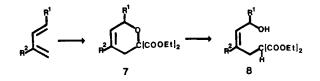
Simon N. Pardo, Subrata Ghosh, Robert G. Salomon⁷ Department of Chemistry, Case Western Reserve University Cleveland, Ohio 44106

Diethyl allylmalonates or 2-arylalkanoic esters are prepared in good yield by reductive α -deoxygenation of the corresponding α -acetoxy or α -alkoxy esters. Since the intermediate ester enolates are generated under aprotic conditions, a one pot reductive-alkylation is also possible. One application of this procedure allows diethyl oxomalonate to serve as a conjunctive reagent for stitching together an alkene and an alkyl halide with a malonyl group as linchpin.

Ene reactions of diethyl oxomalonate¹ (DEOM) replace allylic hydrogen with an α -hydroxymalonyl group (scheme I) by a pericyclic mechanism requiring allylic rearrangement. The consequent

prospect of a novel regiocontrolled synthesis of diethyl allylmalonates <u>6</u> from alkenes <u>1</u> and DEOM (<u>2</u>) prompted us to seek a method for reductive conversion of a α -hydroxymalonates <u>3</u> into malonate anions <u>5</u>. Thus, although ester enolates are generally prepared by deprotonation of the corresponding esters² or reductive cleavage of α -haloesters,³ analogy with ketones⁴ suggested that generation of the synthetically useful ester enolate intermediates by reductive α -deoxygenation might be feasible. A crucial step in the method developed (*vide infra*) is

conversion of the 3° alcohols $\underline{3}$ into the corresponding acetates $\underline{4}$. Although acetic anhydride in pyridine is ineffective for these difficult acylations, 4-(N,N-dimethylamino) pyridine catalyzes rapid, high yield acetylation.⁵

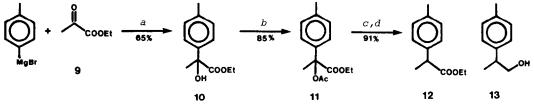

Reductive α -deoxygenation of hydroxy or acetoxy ketones can be accomplished by various dissolving metal and related reactions. However, both <u>3</u> and <u>4</u> are recovered unreduced after treatment with zinc in acetic acid,⁶ chromous chloride in aqueous acid-acetone,⁷ or aluminum amalgam in aqueous ethanol.⁸ Although a poor yield of an allylmalonate was obtained by reductive deoxygenation of an α -hydroxymalonate <u>3</u> with lithium in liquid ammonia, the α -acetoxy derivatives <u>4</u> are deacetoxylated in good yields with this reagent^{3,4} (Table I). Even better yields are ob-

Entry Olefin	Reduction ^a Me Product	$ethod^b$	Yield ^C (%)	Entry Olefin	Reduction ^a Me	ethod ^b Yield (%)	С
()F	Ma ^d	A B	77 66	Concoome	Ма ОН	B 43	
Ć	Ma	A	73	$\langle \Sigma \rangle$	$\langle \Sigma \rangle$	A 95	
\sim	Ma Ma	A	93	D_	Ma Ma	A 72	
Me ₃ Si	Me ₃ Si Ma	A B	86 73	Ľ~ [']		A 75	
\sim	∕ Ma	A	78		HO	A 70	

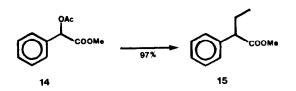
Table I:	Diethyl	Ally	lmalonates	from Alkenes	and 1	,3-Dienes
----------	---------	------	------------	--------------	-------	-----------

^aEne adducts <u>3</u> (entries 1-8) are prepared in 50-90% yields according to reference 1 and acetylated in near quantitative yields according to reference 5; Diels-Alder adducts <u>7</u> entries 9,10) are prepared according to reference 11 in 75-80% yields; ^bFor reduction reaction conditions see footnote 10; ^cFrom acetoxy malonate <u>4</u> or alkoxy malonate <u>7</u>; ^dMa=CH(COOEt)₂

tained by adding a solution of sodium α -(N,N-dimethylamino)naphthalenide⁹ in hexamethylphosphoramide to a solution of the acetylated ene adduct <u>4</u> in benzene (see entries 1 and 4). The dark green color of the naphthalenide anion is discharged rapidly, and the reduction can be done as a titration.¹⁰ This procedure permits selective deoxygenation of the acylated ene adduct of DEOM with α -methylstyrene (entry 5). Use of excess reducing agent in this case results in reduction of the C=C bond which is conjugated with an aromatic ring. However, we were unable to avoid reduction of an isolated carbomethoxyl group (as in entry 6) by titration with a naphthalenide solution. Reductive cleavage is also effective for the α -alkoxymalonate products <u>7</u> from Diels-Alder reaction of DEOM with 1,3-dienes (entries 9,10).¹¹ Again, impressive control of the site of C-C bond formation is achieved, in these cases owing to the high structural specificity of the Diels-Alder reactions. The overall transformation achieves 1,4 carbohydroxylation of 1,3-dienes affording diethyl Z-(4-hydroxy-alk-2-enyl)propanedioates 8 stereoselectively.



An additional useful aspect of naphthalenide reductions of acetylated DEOM ene adducts $\underline{4}$ is the possibility of *in situ* alkylation of the intermediate malonyl carbanions $\underline{5}$ (see scheme I). This allows net replacement of allylic hydrogen by a variety of diethyl alkylmalonyl groups. The versatility of the method is illustrated for methylenecyclopentane.¹²


a) DEOM; b) $Ac_2O/Et_3N/DMAP$; c) $Na^+\alpha-(Me_2N)-Naphthalenide^; d)$ RX (yield): i-PrI (91%); EtI (81%); MeI (73%); allyl bromide (81%).

Generation of ester enolates by reductive α -deoxygenation is not limited to malonic esters. Thus, hydroxy ester <u>10</u>, available¹³ from ethyl pyruvate (<u>9</u>), affords <u>12</u> upon Li/NH₃ reduction

a) -78°C/Et₂0; b) Ac₂0/Et₃N/DMAP; c) Li/NH₃; d) NH₄Cl

of the derived acetate <u>11</u>. A solution of <u>11</u> in ether is added dropwise to a solution of Li in liquid NH_3 until the blue color is just discharged, and then NH_4Cl is added to quench any strong base. If NH_4Cl is added in the presence of excess Li, <u>12</u> is reduced further to <u>13</u>. Reductive alkylation¹² of acetate <u>14</u>, prepared from methyl mandelate, affords <u>15</u> in excellent yield. Further studies on applications of α -deoxygenation for ester enolate generation are in progress.

Acknowledgement: We thank the National Science Foundation for financial support.

References and Notes

- (a) Salomon, M.F.; Pardo, S.N.; Salomon, R.G. J. Am. Chem. Soc. 1980, 102, 2473-5. (b) Achmatowicz, O.; Achmatowicz, O., Jr. <u>Rocz. Chem. 1962, 36</u>, 1791-1813. (c) Achmatowicz, O., Jr.; Szymoniak, J. J. Org. Chem. 1980, 45, 1128-1232.
- 2. Rathke, M.W.; Lindert, A. J. Am. Chem. Soc. 1971, 93, 2318-20 and references cited therein.
- 3. Rathke, M.W., Org. React. 1975, 22, 423-57.
- 4. Ketone enolates can be prepared in this fashion: Weiss, M.J.; Schaub, R.E.; Allen, G.R., Jr.; Poleto, J.F.; Pidacks, C.; Conrow, R.B.; Coscia, C.J. <u>Tetrahedron 1964</u>, 20, 357-72.
- 5. Steglich, W.; Höfle, G. Angew. Chem. Internat. Edit. 1969, 8, 981.
- (a) Dutcher, J.D.; Johnson, J.R.; Bruce, W.F. J. Am. Chem. Soc. <u>1945</u>, <u>67</u>, 1736-45.
 (b) Rosenfeld, R.S. <u>J. Am. Chem. Soc</u>. <u>1957</u>, <u>79</u>, 5540-2.
- (a) House, H.O.; Carlson, R.G. J. Org. Chem. <u>1964</u>, <u>29</u>, 74-8.
 (b) Rosenkranz, G.; Mancera, O.; Gatica, J.; Djerassi, C. J. <u>Am. Chem. Soc. 1950</u>, 72, 4077-80.
- 8. Rosenfeld, R.S.; Gallagher, T.F. J. Am. Chem. Soc. 1955, 77, 4367-70.
- 9. (a) Angelo, B. <u>Bull. Soc. Chim. Fr. 1968</u>, 3855-7. (b) Bank, S.; Platz, M. <u>Tetrahedron Lett</u>. <u>1973</u>, 2097-2100.
- 10. Except with sensitive substrates (e.g., Table I entry 5), a slight excess of reducing agent was used. Representative experimental procedures follow. Method A: A stock solution of reducing agent is prepared under dry nitrogen by stirring a mixture of sodium (24 mmol), α -(N,N-dimethylamino)naphthalene (20 mmol) and hexamethylphosphoramide (20 mL) for 15 hr. This solution can be stored for at least a week at room temperature without appreciable decomposition. Similar solutions in tetrahydrofuran or 1,2-dimethoxyethane are less stable. Reducing reagent solution of acetate (0.5 mmol) in dry benzene (2 mL) until the green color persists for 20-30 sec. The product is isolated by quenching the reaction mixture with cold 10% HCl (20 mL) and extracting with ether (3 x 20 mL) followed by preparative TLC or Kügelrohr distillation of the crude product. Method B: A solution of Li (16 mmol) in liquid NH₃ (40 mL). After stirring for 3 hr., the reaction mixture is quenched with excess granular NH₄Cl. Evaporation of the NH₃ and acidification with 10% HCl followed by extraction with ether affords crude product which is distilled under reduced pressure.
- (a) Achmatowicz, O., Jr.; Jurczac J.; Pyrek, J.S. <u>Tetrahedron 1976</u>, <u>32</u>, 2113-5. (b) Bonjouklian, R.; Ruden, R.A. J. Org. Chem. <u>1977</u>, <u>42</u>, 4095-103. (c) Achmatowicz, O.; Zamojski, A. <u>Roczniki Chem</u>. <u>1961</u>, <u>35</u>, 1251-62.
- 12. Procedure identical with <u>Method A</u> above¹⁰ except that excess alkyl halide (1.1 equiv) is added and the resulting mixture stirred for 30 min. before aqueous acidic quenching.
- 13. Addition of the organometallic in ether to a solution of <u>9</u> at -78°C gave double the yield obtained previously by addition of the ketoester to the organometallic without cooling: Lapkin, I.; Golovkova, A.I. J. <u>Gen. Chem. USSR</u> <u>1948</u>, <u>18</u>, 485-94.

(Received in USA 1 December 1980)